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Outline 


•  Capacity of Wireless Channels (Chapter 4 in Goldsmith’s 
Book) 
•  Capacity in AWGN 
•  Capacity of Flat-Fading Channels 

•  Channel and System Model 
•  Channel Distribution Information (CDI) Known 
•  Channel Side Information at Receiver 
•  Channel Side Information at Transmitter and Receiver 
•  Capacity with Receiver Diversity 

•  Capacity of Frequency-Selective Fading Channels 
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Introduction 

•  Channel capacity was pioneered by Claude Shannon in the late 1940s, 

using a mathematical theory of communication based on the notion of 
mutual information between the input and output of a channel


•  C. E. Shannon, “A Mathematical Theory of Communication”, Bell System 
Technical Journal, vol. 27, pp. 379-423, 623-656, July, October, 1948


Claude Shannon in 1948 (32 years old)


•  Proposed Entropy as a measure of information  

•  Showed that Digital Communication is 
possible. 

•  Derived the Channel Capacity Formula  

•  Showed that reliable information transmission 
is always possible if transmitting rate does not 
exceed the channel capacity 
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The fundamental problem of communication is that of reproducing at one 
point, either exactly or approximately, a message selected at another point. 

                                                                                          ~ Claude Shannon  

C = B log2(1 + SNR)

Channel


Channel Capacity :


Introduction 
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Capacity in AWGN

•  Consider a discrete-time additive white Gaussian noise (AWGN) 

channel with channel input/output relationship                            , where  
x[i] is the channel input at time i, y[i] is the corresponding channel 
output, and n[i] is a white Gaussian noise random process.


•  Assume a channel bandwidth B and transmit power P.


•  The channel SNR, the power in x[i] divided by the power in n[i], is 
constant and given by                         , where       is the power spectral 
density of the noise.


•  The capacity of this channel is given by Shannon’s well-known formula


where the capacity units are bits/second (bps).


•  Shannon’s coding theorem proves that a code exists that achieves data 
rates arbitrarily close to capacity with arbitrarily small probability of bit 
error.
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•  The converse theorem shows that any code with rate R>C has a 
probability of error bounded away from zero.


Capacity in AWGN


•  For a memoryless time-invariant channel with random input x and 
random output y, the channel’s mutual information is defined as


where the sum is taken over all possible input and output pairs                and 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  the input and output alphabets.


•  Mutual information can also be written in terms of the entropy in the 
channel output y and conditional output y|x as 


where
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Capacity in AWGN

•  Shannon proved that channel capacity equals the mutual information of 

the channel maximized over all possible input distributions:


For the AWGN channel, the maximizing input distribution is Gaussian, 
which results in the channel capacity                               .


•  At the time that Shannon developed his theory of information, data rates 
over standard telephone lines were on the order of 100 bps. Thus, it was 
believed that Shannon capacity, which predicted speeds of roughly 30 
Kbps over the same telephone lines, was not a very useful bound for real 
systems. 

•  However, breakthroughs in hardware, modulation, and coding 
techniques have brought commercial modems of today very close to the 
speeds predicted by Shannon in the 1950s.


(4.3)
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Capacity in AWGN

•  Example 4.1: Consider a wireless channel where power falloff with 

distance follows the formula                                 for d0 = 10 m. Assume the 
channel has bandwidth B = 30 KHz and AWGN with noise power 
spectral density of                    W/Hz. For a transmit power of 1W, find 
the capacity of this channel for a transmit-receive distance of 100 m and 
1 Km.
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Capacity of Flat-Fading Channels

•  Assume a discrete-time channel with stationary and ergodic time-

varying gain                        and AWGN n[i], as shown in Figure 4.1.


•  The channel power gain g[i] follows a given distribution p(g), e.g. 
for Rayleigh fading p(g) is exponential. The channel gain g[i] can 
change at each time i, either as an i.i.d. process or with some 
correlation over time.
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Capacity of Flat-Fading Channels

•  In a block fading channel g[i] is constant over some block length T 

after which time g[i] changes to a new independent value based on the 
distribution p(g).


•  Let      denote the average transmit signal power,          denote the noise 
power spectral density of n[i], and B denote the received signal 
bandwidth. The instantaneous received signal-to-noise ratio (SNR) is 
then                                                     and its expected value over all time 
is                          .


•  The channel gain g[i], also called the channel side information (CSI), 
changes during the transmission of the codeword.


•  The capacity of this channel depends on what is known about g[i] at the 
transmitter and receiver. We will consider three different scenarios 
regarding this knowledge: Channel Distribution Information (CDI), 
Receiver CSI and Transmitter and Receiver CSI
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Capacity of Flat-Fading Channels

•  First consider the case where the channel gain distribution p(g) or, 

equivalently, the distribution of SNR p(γ) is known to the transmitter 
and receiver. 

•  For i.i.d. fading the capacity is given by (4.3), but solving for the 
capacity-achieving input distribution, i.e. the distribution achieving 
the maximum in (4.3), can be quite complicated depending on the 
fading distribution. 

•  For these reasons, finding the capacity-achieving input distribution 
and corresponding capacity of fading channels under CDI remains an 
open problem for almost all channel distributions.


•  Now consider the case where the CSI g[i] is known at the receiver at 
time i. Equivalently, γ[i] is known at the receiver at time i.


•  Also assume that both the transmitter and receiver know the 
distribution of g[i]. In this case, there are two channel capacity 
definitions that are relevant to system design: Shannon capacity, also 
called ergodic capacity, and capacity with outage.
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•  For the AWGN channel, Shannon capacity defines the maximum data 
rate that can be sent over the channel with asymptotically small error 
probability. 

•  Note that for Shannon capacity the rate transmitted over the channel is 
constant: the transmitter cannot adapt its transmission strategy relative 
to the CSI. 

•  Capacity with outage is defined as the maximum rate that can be 
transmitted over a channel with some outage probability corresponding 
to the probability that the transmission cannot be decoded with 
negligible error probability. 

•  The basic premise of capacity with outage is that a high data rate can be 
sent over the channel and decoded correctly except when the channel is 
in deep fading. 

•  By allowing the system to lose some data in the event of deep fades, a 
higher data rate can be maintained if all data must be received correctly 
regardless of the fading state. 


Capacity of Flat-Fading Channels
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Capacity of Flat-Fading Channels


•  Shannon capacity of a fading channel with receiver CSI for an average 
power constraint P can be obtained as


(4.4)


•  By Jensen’s inequality,


where      is the average SNR on the channel.


•  Here we see that the Shannon capacity of a fading channel with receiver 
CSI only is less than the Shannon capacity of an AWGN channel with the 
same average SNR. 

•  In other words, fading reduces Shannon capacity when only the receiver 
has CSI.
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Capacity of Flat-Fading Channels

•  Example 4.2: Consider a flat-fading channel with i.i.d. channel gain g[i] 

which can take on three possible values:                with probability             ,    
                   with probability                                   with probability                 .   
     The transmit power is 10 mW, the noise spectral density is                    W/
Hz,  
     and the channel bandwidth is 30 KHz. Assume the receiver has knowledge  
     of the instantaneous value of g[i] but the transmitter does not. Find the  
     Shannon capacity of this channel and compare with the capacity of an  
     AWGN channel with the same average SNR.
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Capacity of Flat-Fading Channels


•  Capacity with outage applies to slowly-varying channels, where the 
instantaneous SNR γ is constant over a large number of transmissions (a 
transmission burst) and then changes to a new value based on the fading 
distribution. 

•  If the channel has received SNR γ during a burst, then data can be sent 
over the channel at rate                      with negligible probability of error 

•  Capacity with outage allows bits sent over a given transmission burst to 
be decoded at the end of the burst with some probability that these bits 
will be decoded incorrectly. 

•  Specifically, the transmitter fixes a minimum received SNR         and 
encodes for a data rate                                      . 

•  The data is correctly received if the instantaneous received SNR is greater 
than or equal to        . 
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Capacity of Flat-Fading Channels


•  If the received SNR is below         then the receiver declares an outage. 
The probability of outage is thus                                    . 


•  The average rate correctly received over many transmission bursts is 
                                                            since data is only correctly received on  
                     transmissions.


•  Capacity with outage is 
typically characterized by a plot 
of capacity versus outage, as 
shown in Figure 4.2. 

•  In Figure 4.2. we plot the 
normalized capacity                  

                                           as a 
function of outage prob. 
                                    for a Rayleigh 
fading channel with             dB.
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Capacity of Flat-Fading Channels

•  Example 4.3: Assume the same channel as in the previous example, with 

a bandwidth of 30 KHz and three possible received SNRs                     
with                                        with                 , and                      with              . 
Find the capacity versus outage for this channel, and find the average 
rate correctly received for outage prob.                                                 .
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Capacity of Flat-Fading Channels

For                  data transmitted at rates close to capacity C = 26.23 Kbps 
are always correctly received since the channel can always support this 
data rate. For                 we transmit at rates close to C = 191.94 Kbps, but 
we can only correctly decode these data when the channel SNR is             , 
so the rate correctly received is (1-0.1)191940 = 172.75 Kbps. For              
we transmit at rates close to C = 251.55 Kbps but we can only correctly 
decode these data when the channel SNR is     , so the rate correctly 
received is (1-0.6)251550 = 125.78 Kbps. It is likely that a good engineering 
design for this channel would send data at a rate close to 191.94 Kbps, since 
it would only be received incorrectly at most 10% of this time and the data 
rate would be almost an order of magnitude higher than sending at a rate 
commensurate with the worst-case channel capacity. However, 10% 
retransmission probability is too high for some applications, in which case 
the system would be designed for the 26.23 Kbps data rate with no 
retransmissions.
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Capacity of Flat-Fading Channels

•  When both the transmitter and receiver have CSI, the transmitter can 

adapt its transmission strategy relative to this CSI, as shown in Figure 
4.3.


•  In this case, there is no notion of capacity versus outage where the 
transmitter sends bits that cannot be decoded, since the transmitter 
knows the channel and thus will not send bits unless they can be 
decoded correctly.
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Capacity of Flat-Fading Channels

•  Now consider the Shannon capacity when the channel power gain g[i] is 

known to both the transmitter and receiver at time i.


•  Let s[i] be a stationary and ergodic stochastic process representing the 
channel state, which takes values on a finite set S of discrete memoryless 
channels.


•  Let      denote the capacity of a particular channel            , and p(s) 
denote the probability, or fraction of time, that the channel is in state 
s. The capacity of this time-varying channel is then given by


•  The capacity of an AWGN channel with average received SNR γ is


(4.6)
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Capacity of Flat-Fading Channels

•  From (4.6) the capacity of the fading channel with transmitter and 

receiver side information is  


•  Let us now allow the transmit power P(γ) to vary with γ, subject to 
an average power constraint


•  Define the fading channel capacity with average power constraint as


(Can this capacity be achieved?)


(4.9)
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Capacity of Flat-Fading Channels

•  Figure 4.4 shows the main idea of how to achieve the capacity in (4.9) 


•  To find the optimal power allocation P(γ), we form the Lagrangian
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Capacity of Flat-Fading Channels

•  Next we differentiate the Lagrangian and set the derivative equal to 

zero:


•  Solving for P(γ) with the constraint that P(γ) > 0 yields the optimal 
power adaptation that maximizes (4.9) as


for some “cutoff” value      :


•  If γ[i] is below this cutoff then no data is transmitted over the ith time 
interval, so the channel is only used at time i if                        .


•  Substituting (4.12) into (4.9) then yields the capacity formula:


(4.12)


(4.13)
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Capacity of Flat-Fading Channels

•  The multiplexing nature of the capacity-achieving coding strategy 

indicates that (4.13) is achieved with a time varying data rate, where the 
rate corresponding to instantaneous SNR γ is                      .


•  Note that the optimal power allocation policy (4.12) only depends on 
the fading distribution p(γ) through the cutoff value      . This cutoff 
value is found from the power constraint.


•  By rearranging the power constraint and replacing the inequality with 
equality (since using the maximum available power will always be 
optimal) yields the power constraint


•  By using the optimal power allocation (4.12), we have 
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Capacity of Flat-Fading Channels

•  Note that this expression only depends on the distribution p(γ). The value 

for      cannot be solved for in closed form for typical continuous pdfs p(γ) 
and thus must be found numerically.


•  Since γ is time-varying, the maximizing power adaptation policy of (4.12) 
is a “water-filling” formula in time, as illustrated in Figure 4.5.


•  The water-filling 
terminology refers to the 
fact that the line 1/γ 
sketches out the bottom of a 
bowl, and power is poured 
into the bowl to a constant 
water level of          .


P (�)

P

1

�
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Capacity of Flat-Fading Channels

•  Example 4.4: Assume the same channel as in the previous example, with 

a bandwidth of 30 KHz and three possible received SNRs:                   
with                                     with                                              
with                   . Find the ergodic capacity of this channel assuming both 
transmitter and receiver have instantaneous CSI.


Solution: We know the optimal power allocation is water-filling, and we 
need to find the cutoff value      that satisfies the discrete version of (4.15) 
given by


We first assume that all channel states are used to obtain        , i.e. 
assume                      , and see if the resulting cutoff value is below that of 
the weakest channel. If not then we have an inconsistency, and must redo 
the calculation assuming at least one of the channel states is not used. 
Applying (4.17) to our channel model yields
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Capacity of Flat-Fading Channels
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Capacity of Flat-Fading Channels

Comparing with the results of the previous example we see that this rate is 
only slightly higher than for the case of receiver CSI only, and is still 
significantly below that of an AWGN channel with the same average SNR. 
That is because the average SNR for this channel is relatively high: for low 
SNR channels capacity in flat-fading can exceed that of the AWGN channel 
with the same SNR by taking advantage of the rare times when the channel 
is in a very good state.


•  Zero-Outage Capacity and Channel Inversion: now consider a suboptimal 
transmitter adaptation scheme where the transmitter uses the CSI to 
maintain a constant received power, i.e., it inverts the channel fading.


•  The channel then appears to the encoder and decoder as a time-invariant 
AWGN channel. This power adaptation, called channel inversion, is 
given by                         where σ equals the constant received SNR that 
can be maintained with the transmit power constraint (4.8).
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Capacity of Flat-Fading Channels

•  The constant σ thus satisfies


•  Fading channel capacity with channel inversion is just the capacity of an 
AWGN channel with SNR σ:


•  The capacity-achieving transmission strategy for this capacity uses a fixed-
rate encoder and decoder designed for an AWGN channel with SNR σ. 

•  This has the advantage of maintaining a fixed data rate over the channel 
regardless of channel conditions. 

•  For this reason the channel capacity given in (4.18) is called zero-outage 
capacity. 

•  Zero-outage capacity can exhibit a large data rate reduction relative to 
Shannon capacity in extreme fading environments. For example, in 
Rayleigh fading E[1/γ] is infinite, and thus the zero-outage capacity given 
by (4.18) is zero.


(4.18)
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Capacity of Flat-Fading Channels

•  Example 4.5: Assume the same channel as in the previous example, with 

a bandwidth of 30 KHz and three possible received SNRs:                 
with                                    with                                            with                 . 
Assuming transmitter and receiver CSI, find the zero-outage capacity 
of this channel.


•  The outage capacity is defined as the maximum data rate that can be 
maintained in all nonoutage channel states times the probability of 
nonoutage.
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Capacity of Flat-Fading Channels

•  Outage capacity is achieved with a truncated channel inversion policy for 

power adaptation that only compensates for fading above a certain cutoff 
fade depth


•  Since the channel is only used when             , the power constraint (4.8) 
yields                        , where


•  The outage capacity associated with a given outage probability         and 
corresponding cutoff      is given by
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Capacity of Flat-Fading Channels

•  We can also obtain the maximum outage capacity by maximizing outage 

capacity over all possible


•  This maximum outage capacity will still be less than Shannon capacity 
(4.13) since truncated channel inversion is a suboptimal transmission 
strategy.


•  Example 4.6: Assume the same channel as in the previous example, with 
a bandwidth of 30 KHz and three possible received SNRs:                   with    

                                           with               , and                      with                    .  
    Find the outage capacity of this channel and associated outage  
    probabilities for cutoff values                                     . Which of these cutoff  
    values yields a larger outage capacity?
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•  Consider a time-invariant channel with frequency response H(f), as 
shown in Figure 4.9. Assume a total transmit power constraint P.


Capacity of Frequency-Selective Fading Channels
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Capacity of Frequency-Selective Fading Channels

•  First assume that H(f) is block-fading, so that frequency is divided 

into subchannels of bandwidth B, where                      is constant over 
each block, as shown in Figure 4.10.


•  The frequency-selective 
fading channel thus consists 
of a set of AWGN channels in 
parallel with SNR                  
on the jth channel, where      
is the power allocated to the 
jth channel in this parallel set, 
subject to the power 
constraint
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Capacity of Frequency-Selective Fading Channels


•  The capacity of this parallel set of channels is the sum of rates associated 
with each channel with power optimally allocated over all channels


•  This is similar to the capacity and optimal power allocation for a flat-
fading channel, with power and rate changing over frequency in a 
deterministic way rather than over time in a probabilistic way.


•  The optimal power allocation is found via the same Lagrangian technique 
used in the flat-fading case, which leads to the water-filling power 
allocation


for some cutoff value     , where                                   is the SNR
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Capacity of Frequency-Selective Fading Channels


associated with the jth channel assuming it is allocated the entire power budget.


•  This optimal power allocation is illustrated in Figure 4.11.


•  The cutoff value is obtained by substituting the power adaptation 
formula into the power constraint, so      must satisfy


Pj

P 1

�j
=

N0B

P |Hj |2

1

�0

1

�
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Capacity of Frequency-Selective Fading Channels


•  The capacity then becomes


•  This capacity is achieved by sending at different rates and powers over 
each subchannel.


•  When H(f) is continuous the capacity under power constraint P is 
similar to the case of the block-fading channel, with some mathematical 
intricacies needed to show that the channel capacity is given by


(4.27)
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Capacity of Frequency-Selective Fading Channels


•  The power allocation over frequency, P(f), that maximizes (4.27) is found 
via the Lagrangian technique. The resulting optimal power allocation is 
water-filling over frequency:


•  This results in channel capacity


•  Example 4.7: Consider a time-invariant frequency-selective block fading 
channel consisting of three subchannels of bandwidth B = 1 MHz. The 
frequency response associated with each channel is                            and   

                  . The transmit power constraint is P = 10 mW and the noise PSD is   
                        W/Hz. Find the Shannon capacity of this channel and the  
     optimal power allocation that achieves this capacity.
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Capacity of Frequency-Selective Fading Channels
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Appendix:  
Channel Capacity for a Gaussian Channel
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Introduction to Gaussian Channel


Figure: A Gaussian Channel


•  The most important continuous alphabet channel is the Gaussian 
channel depicted in the following figure. This is a time-discrete 
channel with output      at time i, where      is the sum of the input   
and the noise      .


Yi Yi Xi

Zi

•  The noise       is drawn i.i.d. from a Gaussian distribution with 
variance N. Thus,


Zi

•  The noise       is assumed to be 
independent of the signal       .


Zi

Xi

•  If the noise variance is zero or the 
input is unconstrained, the 
capacity of the channel is infinite.
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Introduction to Gaussian Channel

•  Assume an average power constraint. For any codeword           

transmitted over the channel, we require that

(x1, x2, . . . , xn)

•  Assume that we want to send 1 bit over the channel in one use of the 
channel.


•  Given the power constraint, the best that we can do is to send one 
of two levels,            or       . The receiver looks at the corresponding 
Y received and tries to decide which of the two levels was sent.


�
p
P

p
P

•  Assuming that both levels are equally likely (this would be the case 
if we wish to send exactly 1 bit of information), the optimum 
decoding rule is to decide that          was sent if Y>0 and decide  
was sent if Y<0.            


p
P �

p
P
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Introduction to Gaussian Channel

•  The probability of error with such a decoding scheme is


where           is the cumulative normal function
�(x)

•  Using such a scheme, we have converted the Gaussian channel into 
a discrete binary symmetric channel with crossover probability       .
Pe
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Differential Entropy

•  Let X now be a continuous r.v. with cumulative distribution


and                             is the density function.

f(x) =

d

dx

F (x)

F (x) = Pr(X  x)

•  Let                                    be the support set. Then
S = {x : f(x) > 0}

•  Definition of Differential Entropy (h(X)) : 


Since we integrate over only the support set, no worries about log 0.


h(X) = �
Z

S
f(x) log f(x) dx
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Differential Entropy of Gaussian Distribution


•  If we have:


•  Let’s compute this in nats.


•  Note: only a function of the variance      , not the mean. Why? 
•  So entropy of a Gaussian is monotonically related to the variance.


�2

=

1

2

log2 2⇡e�
2, bits

=
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•  Definition : The relative entropy (or Kullback–Leibler distance)  
between two densities f and g is defined by


D(f ||g)

•  Theorem : Let random variable �X have zero mean and variance      .     
Then                                    , with equality iff                        . 


Proof: Let          be any density satisfying                            . Let         be the 
density of a Gaussian random variable with zero mean and variable      . 
Note that              is a quadratic form and it is                                 . Then


Gaussian Distribution Maximizes Differential Entropy 


�2

X ⇠ N (0,�2)h(X)  1
2 log2(2⇡e�

2
)

g(x)
R
x

2
g(x)dx = �

2
�(x)

�2

log �(x)

D(g||�) =
Z

g(x) log

✓
g(x)

�(x)

◆
dx

= �h(g)�
Z

g log(�(x))dx = �h(g)�
Z

�(x) log(�(x))dx

= �h(g) + h(�) � 0

•  Therefore, the Gaussian distribution maximizes the entropy overall 
distributions with the same variance.


D(g||�) =
Z

g(x) log

✓
g(x)

�(x)

◆
dx � 0

(Why?)


� x

2

2�2 � 1
2 log(2⇡�

2
)
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Definitions of Gaussian Channels


•  Definition : The information capacity of the Gaussian channel with 
power constraint P is


•  We can calculate the information capacity as follows: 
Expanding                 , we have
I(X;Y )

since Z is independent of X. Now                                     . Also,


since X and Z are independent and E[Z]=0.
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•  Given                           , the entropy of Y is bounded by                      
(the Gaussian distribution maximizes the entropy for a given variance).


EY 2 = P +N 1
2 log 2⇡e(P +N)

•  Applying this result to bound the mutual information, we obtain


Definitions of Gaussian Channels


•  Hence, the information capacity of the Gaussian channel is


and the maximum is attained when                         .
X ⇠ N (0, P )




